On Element-Connectivity Preserving Graph Simplification
نویسندگان
چکیده
The notion of element-connectivity has found several important applications in network design and routing problems. We focus on a reduction step that preserves the element-connectivity [18,4,3], which when applied repeatedly allows one to reduce the original graph to a simpler one. This pre-processing step is a crucial ingredient in several applications. In this paper we revisit this reduction step and provide a new proof via the use of setpairs. Our main contribution is algorithmic results for several basic problems on element-connectivity including the problem of achieving the aforementioned graph simplification. We utilize the underlying submodularity properties of element-connectivity to derive faster algorithms.
منابع مشابه
A note on connectivity and lambda-modified Wiener index
In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
متن کاملOn the Szeged and Eccentric connectivity indices of non-commutative graph of finite groups
Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...
متن کاملA Graph Reduction Step Preserving Element-Connectivity and Applications
Given an undirected graph G = (V,E) and subset of terminals T ⊆ V , the element-connectivity κ G (u, v) of two terminals u, v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V \ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellerma...
متن کاملOn Second Atom-Bond Connectivity Index
The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G) uvE (G ) (du dv 2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.
متن کاملOPTIMAL DECOMPOSITION OF FINITE ELEMENT MESHES VIA K-MEDIAN METHODOLOGY AND DIFFERENT METAHEURISTICS
In this paper the performance of four well-known metaheuristics consisting of Artificial Bee Colony (ABC), Biogeographic Based Optimization (BBO), Harmony Search (HS) and Teaching Learning Based Optimization (TLBO) are investigated on optimal domain decomposition for parallel computing. A clique graph is used for transforming the connectivity of a finite element model (FEM) into that of the cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015